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Abstract 

Two points of view of the relationship between symmetries of a dynamical system and 
constants of the motion, in the Lagrangian framework, are compared. The first point of 
view is that associated with Noether's theorem, the second, with the Caftan form approach 
to Lagrangian mechanics. It is argued that the second is more satisfactory. 

1. Introduction 

My purpose in this paper is to compare two different views of  the relation- 
ship between constants of  the motion of  a dynamical system with a finite 
number o f  degrees of  freedom, and symmetries of  the system. Both views 
assume the Lagrangian formulation of  the equations of  motion. The first is 
the well-known range of  ideas associated with Noether's theorem. The second 
point of  view is perhaps less familiar: It is based on E. Cartan's idea that the 
fundamental geometrical quantity, in the potentially very geometrical theory 
of  Lagrangian mechanics, is not  the Lagrangian function, but the exterior 
derivative o f  a certain differential one-form now known as the Caftan form. 

I hope to show that Cartan's point of  view is the superior one. It leads to a 
straightforward theory in which the notion of  symmetry, and the relationship 
between symmetries and constants of  the motion, are entirely natural. Noether's 
theorem, in this context,  is neither so clear nor so universal; and contrary to the 
claims of  several authors (Palmieri and Vitale, 1970; Saletan and Cromer, 1971), 
it does not appear to have a converse-as it is formulated here, at any rate. 

To fully explain the differences between the two points of view it is desirable 
to use the techniques and terminology of  modern differential geometry- tan-  
gent bundles, vector fields, differential forms, the Lie derivative, and so on. It 
is only by using this language that one can clearly express the necessary ideas 
about transformations and symmetries. The formulation of  Lagrangian mech- 
anics in these terms is quite commonplace now. R. Hermann's approach, in his 
book Differential Geometry and the Calculus o f  Variations (Hermann, 1968), 
is close in spirit to the approach adopted in this paper. I give a brief derivation 
of  the expression of  Lagrange's equations by means of  the Cartan form in the 
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first main section of the paper. However, it is obviously impossible in a short 
paper to derive all the necessary properties of  vector fields and differential 
forms; instead, I shall merely list some of the main notations used below. 

2. Notation 

(X, co) denotes the pairing of a vector field X and a one-form co, that is, the 
function whose value at any point x is the value of the covector cox on the 
vector Xx.  X .2 g2 is the contraction of the p-form ~2 with the vector field X; 
if ~2 is a two-form, for example, then X_J ~2 is the one-form given by 

( Y, X / a )  = a (X,  Y) 

for any vector field Y. L x  denotes the Lie derivative along the vector field X. 
Frequent use is made of the formula 

L x a  = X 2J da + d(X, a) 

for the Lie derivative of a one-form c~. 

3. The Cartan Form 

In kagrangian mechanics one represents the dynamics of  a mechanical system 
by a vector field on the tangent bundle to the space of  configurations of  the 
system (rather than one on the cotangent bundle, which is the domain of 
Hamiltonian mechanics). In fact the theory is best worked out in evolution space, 
T(M) x R; M is the configuration space (a differentiable manifold), T ( M )  its 
tangent bundle, and the real line R is added to allow one to deal with the time 
explicitly. It seems to be advantageous to include the time explicitly even 
when the Lagrangian is not directly dependent on time. 

Since all considerations in this paper are of  a purely local nature, it will 
frequently be possible to use coordinates. The coordinates o f  a point p in 
evolution space will be written (xl, x 2 . . . . .  xn, v 1, v2, . .  -, v n, t); here (x i, 
x 2, . . . ,  x n) are the coordinates of lr(p), the projection o f p  into M, with 
respect to some coordinate system in M; (v 1, v2~. . . ,  v n) are the components 
of a tangent vector to M at 7r(p) with respect to the coordinate basis alex 1, 

O/Ox 2 . . . . .  O/Oxn; and t is the time. The system in question has n degrees of  
freedom. 

The motions of the mechanical system are the projections into M of the 
integral curves of a certain vector field 1" on T ( M ) x  R. This vector field can be 
specified by first choosing a local basis for one'forms or~ T(M)  x R,  and then 
giving the values of  these one-forms on P. A suitable choice of  one-forms is 

dx  a - vadt, a = 1 ,2  . . . . .  n 

dva - Aadt, a = l , 2 , . . , n  

dt  



MOTION IN LAGRANGIAN MECHANICS 743 

The functions A 1, A z . . . . .  A n are given in terms of the Lagrangian function 
L of the system, which is a function on T ( M )  x R, as follows: 

~ 2 L  A b _  ~ L  02L b 0 2 L  

~vaOv~ ~)X a ~vaoxb V ~vaot 

(it is assumed that the Lagrangian L is regular, in other words, that the matrix 
O2L/Ovaovb is nonsingular). This choice of  one-forms is appropriate because 
the definition of P is very simple: 

(P, d x  a - v a d t ) =  0 

(P, d v  a - A a d t ) =  0 

(P, d t )  = 1 

The first set of these conditions, and the last, have a straightforward geo- 
metrical significance. Any curve in M may be lifted to a curve in T ( M )  x R by 
adjoining to it its tangent vectors, and by identifying its parameter with the 
time. The tangent vector to any such lifted curve is annihilated by the one- 
forms d x  a - vadt ,  and gives 1 when paired with dt .  T h e  fact that P behaves in 
this manner shows, conversely, that its integral curves are obtained by lifting 
to T ( M )  x R curves in M in just the same way. 

The conditions 

(P, d v  a - A a d t  ) = 0 

amount to Lagrange~s equations, as must be evident from the definition of the 
functions A a. Since (P, d x  a - vad t )  = (P, d v  a - A a d t )  = 0, the contraction o f f  
with any form constructed from the one-forms d x  a - vad t  and d v  a - A a d t  by 
taking exterior products and multiplying by arbitrary functions must also 
vanish. In particular 

P _J \ ~ x - ~ - V b  ( d x  a - v a d t )  + g a b ( d r  a - A a d t )  A ( d x  b - v b d t )  = 0 

(Here gab is written for O 2 L ~ v a o v  b, a convenient notation, and one which is 
appropriate since O2L/OvaOvb plays a role in Lagrangian mechanics somewhat 
similar to the role played by the metric in Riemannian geometry, to which of 
course it reduces when L is actually the "'kinetic energy" of a Riemannian 
metric.) This result about P is important for two reasons. In the first place it 
is equivalent to the conditions (P, d x  a - vad t )  = (P ,  d v  a - A a d t )  = O, not just a 
consequence of them: In other words, P is uniquely specified by the conditions 

I" _1 \ ~ ( d x  a - v a d t )  + g a b ( d r  a - A a d t )  A ( d x  b - v b d t )  = 0 

Second, this two-form is the exterior derivative of a one-form, which I shall 
denote by O: 

~L 
0 = L d t  + - -  ( d x  a - vad t )  

Ov a 
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It is this one-form 0 that is called the Cartan form. The conditions that deter- 
mine 17' may be expressed more succinctly as 

P _1 dO = O, (r ,  dt )  = 1 

The first says that P is what is known as a characteristic vector field of  dO. 
The analysis so far has been based on the fact that dx a - vadt, dv a - Aadt, 

dt form a basis for the one-forms on T(M) x R. Locally at least, each one-form 
on T(M) x R can be expressed uniquely in terms of  these. (In the case of  0, it 
is interesting to note that there is no dependence on dv a - Aadt.) The coeffi- 
cients in the expression of  a one-form ~ are easily determined. In fact 

~ = / - O  , ~ ) ( d x a - v a a t ) + / Z , ~ ) ( d v a - a a d t ) + ( r , ~ ) d t  
\ a x  a \ O v  a 

In particular, if a = df i s  exact, one obtains 

d f  = Of (dxa vadt ) af  (dva _ Aadt ) + P ( f ) d t  
Ox-- ~ - + Or-- 5 

and i f f  should be independent of  v a, then 

dr= Of ( d x a - v a d t ) + (  va Of a Ox a Or/ 

Since I ~ is determined in terms of dO (rather than 0 itself), modifications to 0 
that do not affect dO will not change lP either. If  0 and O' are Cartan forms 
(for different Lagrangians) that have the same exterior derivative, and so lead 
to the same equations of  motion, they must differ by a closed form, and so 
locally there is some function f such that 

O'=O + d f  

Since both 0 and O' are independent o f  d v  a - Aadt, so also must d f  be, and 
thus f m u s t  be independent of  v a. Then 

O' = L + va __Of + dt  + + (dx a - vadt) 
Ox a 

and corresponds to the Lagrangian obtained by adding to L the "total  time 
derivative" o f f ( t o  use a classical phrase). 

4. Constants o f  the Mot ion - the  Caftan Point o f  View 

A constant o f  the motion for a dynamical system is a function on T ( M ) x R  
that is constant along each integral curve o f  P; in other words, a function F 
for which 

r ( ~ )  = 0 
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But F(F) is the coefficient of dt  in the expression for d F  in terms of dx  a - vadt, 

dv a - Aadt,  dt .  So another way of saying that F is a constant of the motion is 
to say that dF, when expressed in terms of that basis, does not involve dt. Then 
the problem of finding constants of the motion amounts to the problem of 
finding exact one-forms amongst the collection of one-forms generated by 
dx a - vadt and dv a - Aadt. 

The exterior derivative of the Cartan form contains, in the one object, all 
the information contained by the 2n one-forms dx  a - vadt and dv a - Aadt. It 
is thus natural to try to reinterpret what was said above about constants of 
the motion in terms o f  dO. This leads in a natural way to a relation between 
constants of the motion and symmetries of the system. 

The situation is this. To every vector field X on T ( M )  x R there corresponds 
a one-form X _1 dO, which is a linear combination of the o n e - f o r m s d x  a - vadt 
and dv a - Aadt; and conversely to every such one-form there corresponds a 
vector field-or rather, to be precise, a collection of vector fields. This corres- 
pondence can easily be found explicitly; in fact 

~a 3 0 O 
OX - ~  + ~a Ov ~ + r 3--t -+ --gab(~O -- vb T)(dva -- Aadt )  + terms in (dx a - vadt) 

A more elegant treatment uses the fact that for each point p in evoIution space 
E, the map 

Tp(E)-+ T p ( E )  

by 

~-+ ~_J dOp 

is a linear map whose kernel is the one-dimensional subspace of Tp(E)  consist- 
ing of multiples of Pp. The image space is therefore 2n dimensional. If c~ ties in 
this image space, then there is some ~ ~ Tp(E)  such that 

~ _J dOp = o~ 

But then 

(Fp, ~) = (pp, ~ J dOp~ 

= dOp(~,  G) 
= 0  

since P is characteristic for dO. Thus the image space of Tp(E) under this map 
is certainly contained in the subspace of T*(E)  consisting of those one-forms 

a a u £/ a - - - 
that are linear combinations o f d x  - v d t  and dv - A dr-which is just the 
subspace of those ~ such that (Fp, o~) = 0. Since both spaces are 2n dimensional, 
they must coincide. In other words, (Pp, o~) = 0 if and only if there is a vector 

E Tp(E) such that ~ = ~ _J dOp. 
To every one-form that gives zero when paired with P, there corresponds a 

vector field; two vector fields yield the same one-form if and only if they 
differ by a multiple of P. 
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To find a constant of  the motion one has to find a one-form that  gives zero 
when paired with I ~ and that is exact. What condition does this latter require- 
ment impose on a corresponding vector field )(9. If  X _.] dO is exact, then so is 
X ~  dO +diX,  O);but 

X_] dO +d(X,O)=LxO 

the Lie derivative of  O. And if LxO is exact, then 

LxdO = 0 

It is natural to describe a vector field X, which has the property that  the Lie 
derivative along X of the principle geometrical object of  a system vanishes, as 
a symmetry of  the system. The one-parameter group of  transformations gener- 
ated by X will pull dO back to itself, after all. In this sense (and ignoring 
difficulties about closure of  forms not necessarily implying exactness), constants 
of  the motion correspond to symmetries,  via the Cartan form. To be precise, 
we have the following: 

Theorem. 

(i) I f  the vector field X is such that LxO is exact, say LxO = dr, then 
f -  iX, O) is a constant of  the motion. 

(ii) If  F is a constant of  the motion,  there is a vector field X such that 
LxO = d (F  + iX, 0 )), and any vector field X +gP,  where g is any 
function on T(M) x R, has the same property. 

(iii) Of atl the vector fields (differing by multiples o f  P) which generate 
a given constant of  the motion,  there is a unique one Y such that 
I Y, dt) = O; this vector fieId Y satisfies [ Y, F] = O, so the corres- 
ponding one-parameter group of  transformations permutes the 
integral curves of  P. 

Proof. O) If  LxO ~- dr, then 

X ~  dO=Lx  0 - d i X ,  O) 

= d ( f -  <X,O>) 
and so 

r ( f -  tx ,  o >) = <r, ( x_J  dO)> =0 

and f -  (X, 0 ) is a constant o f  the motion. 
(ii) Conversely, suppose that F is a constant of  the motion; then (I ~, dF) = O, 

so there is at least one vector field X such that  

Then 

X_J dO = dF 

LxO=X_3 dO +d(X,O) 

= d ( F  + fX, O >) 
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Moreover, X + gP = Y also satisfies Y_J dO = d F  (whatever the function g may 
be), and so by  the same argument,  L yO = d ( F  + (Y, 0 )). 

(iii) I f  X generates a constant o f  the motion,  and (X, dt )  ~ O, then X - 
(X, d t ) P  = Y generates the same constant of  the motion,  and ( Y, dt )  = O. Now 
since LydO = 0 and F _A dO = 0, it follows that 

0 = L y ( F  A dO) 

= [Y,P]  _]dO + F _ l L y d O  

= [Y, p] _JdO 

Thus [Y, P] is a characteristic vector field for O, and so must be a multiple of  
P. (This is true for any vector field that  is a symmetry,  whether it satisfies 
(X, dr} = 0 or not; in general such X will permute the integral curves of  P as 
curves, but will change their parametrization.) Since (Y, d t )  = O, 

( [ Y , r ] , d t ) =  [Y, r ]  (t) 

= YO~(t)) - F(Y(t) )  

= Y(F,  dt)  - F(Y,  dt)  

= Y(1) - r (o )  

= 0  

But (P, dr> = 1, so [Y, P] can be only the zero multiple of  P; in other words, 

[Y, P] = 0  

Thus the one-parameter group of  transformations of  T(M)  x R generated by Y 
permutes integral curves of  P, or maps motions to motions. [] 

Note that if the symmetry vector field is 

X = ~ a  ~ a ~ - - + 7 - -  
a~ - ~ + ~  av a ~t 

then the constant of  the motion is 

f - ( x , O ) = f -  Lr+~v~( t -v%) 

In terms of  the Cartan form, therefore, one has a very clear picture of  the 
relationship between symmetries and constants of  the motion.  A symmetry  is 
a vector field X such that LxdO = O; then locally at least, X _1 dO is exact, and 
the function whose exterior derivative it is, is a constant of  the motion;  more- 
over, X may be normalized so that it permutes the integral curves of P. 

5. Noether's Theorem 

The notion of  symmetry  in Noether 's  theorem is expressed in terms of  the 
Lagrangian, rather than the Cartan form. In its simplest version, the procedure 
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is to consider the effect of a transformation of  configuration space (that is, a 
point transformation) on the Lagrangian. But since the Lagrangian is a function 
of the velocity variables, and possibly also the t ime-in other words, a function 
on evolution space-it is necessary to extend the transformation to a trans- 
formation of evolution space. More generally, to encompass the conservation 
of energy when the Lagrangian is time independent, for example, one may 
consider transformations of configuration space and time. There is then an 
additional complication: As well as finding how to extend the transformation 
to evolution space, one has to consider the invariance not of the Lagrangian L 
itself, but of  the one-form/At. 

I look first at the question of extending transformations o fM x R to trans- 
formations of  T ( M )  x R.  

I shall call the set of one-forms dx  a - vadt, and those one-forms that are 
linear combinations of them (with functions as coefficients) the contact one= 
forms, and denote them by C The tangent vector of  any curve in T ( M )  x R 
that is obtained from a curve inM, parametrized by time, by adjoining i ts  
tangent vectors, is annihilated by all the contact forms. This is their geometrical 
significance. The extension of a vector field on M x R to T ( M )  x R is achieved 
by demanding that the extended vector field preserve contact forms. 

Proposition. Let Z be a vector field on M x R. There is a unique vector 
field X on T ( M )  x R that projects onto Z and preserves contact forms, 
in the sense that Lx(c lx  a - vadt) ~ C, for all a = 1, 2 . . . . .  n. 

Proof, Suppose 

O O 
Z = ~  a - - + f -  

Ox a Ot 

where ~a and r are functions o f x  a and t. Then 

_ _  O + n  a O O 
X = ~  a - - + 7 " - -  

Ox a Ov a at  

and the problem is to determine the functions ~a Now 

L x ( d x  ~ - vadt) = d~ a - nadt - v~dT" 

\ax  

+ L Ox b + - - - -  bt ~v ~xxb + ~-t _ ~?a d t  
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So L x ( d x  a - vadt) C Ci f  and only if 

+ - -  _ v b ~; 
Ot ~ + ~  

_-{a  _ vo~ 

to use an obvious classical notation. So the functions r/a are determined by the 
condition L x ( d x  a - vadt) E C. [] 

The most general version of  Noether's theorem usually presented (Lovelock 
and Rund, 1975, for example) is the following. 

Theorem.  If X preserves contact forms, and projects onto a vector field 
in M x R, and if there is a function f on T ( M )  x R su& that 

L x ( ~ t )  - a f e  c 

then f -  (X, O) is a constant of  the motion, where 0 is the Cartan form 

Proof. 

L x O  = L x  L d t  + - -  ( d x  a - vadt) 
Ov a 

Thus 

= A x ( L d O  \Ova / (dx a - v~dt) + ~ L x ( d X  ~ - ~"dt) 

= d f  + a where a E C 

X_A d O = d ( f - ( X , O ) + a  

Now, (F, ed = 0 since c~ ~ C Thus P ( f -  (X, 0))  = O, and so f -  (X, O) is a 
constant of  the motion. []  

There are several points worth noting about this proof. First, the hypo- 
thesis that X projects onto a vector field on M x R is not in fact used in the 
proof. Thus there is a generalization o f  Noether's theorem to vector fields on 
T(M) x R that preserve contact forms, but that do not necessarily come from 
extending vector fields on M x R. Second, the Caftan form plays an important 
role in both theorem and p roof - in  the specification of  the actual constant of  
the motion, and in the way the defining property o f  I '  as characteristic vector 
field for dO is used. Third, despite this, X is not necessarily a symmetry in 
the earlier sense-it  is not  necessarily the case that L x d O  = 0. Fourth, the 
equation 

X I dO = d ( , f  - (X ,O))  +c~ 
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is, despite appearances, essentially equivalent to the classical fundamental 
variational formula. In fact, if 

X=~a O O O 
- -  - - + 7 " - -  
OX a + ~la ~v a ~t 

and if 

t -~ x a(t) 

is a curve in M, which lifts to the curve 

t -+ (xa(t), 2: a(t), t) 

in T(M) x R (not necessarily an integral curve of  P), with tangent vector 

T=jca ~ + ~ a  O O 
Ox a Ov a Ot 

then 

(T, X I dO) = - ( T ,  gab(~ b -- vbr)(dv a -- Aadt)) 

= - g a e ( ~  b - v % ) ( ~  a - A ~) 

[OL d [OL\] a 
~ ~aT~ 

Use has been made here of  the fact that 

(T, dx a - vadt) = 0 

the terms OL/Ox a and OL/Ov a are to be regarded here as functions on the curve, 
and d/dt denotes differentiation atong the curve. Moreover, 

( T , d ( f _ ( X , O ) ) + a ) = d  ( [ OL ] )  dt f -  L r + - - ( ~ a - v a r )  
Ov a 

Thus the fundamental variational formula is obtained: 

a T  at  ~ (~a _ var) = f -  Lr + Ov a -  (~a _ var) 

Judging from its hypotheses, Noether's theorem has little to do with the 
earlier result involving the Caftan form. Actually, the two are quite closely 
related. The crucial point of  the proof of  Noether's theorem is that 

LxO = d f  + a 

where the one-form a is such that (F, a) = O. Now since (F, a) = O, there is a 
vector field Y such that 

Y I  dO=a 
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Consider the vector field Z = X - Y. Then 

LzO = LxO - LyO 

= d f  + a - (Y_J  dO + d ( Y ,  0)) 

= d ( f  - (Y ,O})  

Thus LzO is exact; Z satisfies the hypothesis of  the Cartan form result, and so 
generates a constant o f  the motion according to that theorem, namely, 

( f  - (Y,O)) - ( Z , O ) =  f - (X,O) 

In fact Z generates the same constant o f  the motion, via the Cartan form, as X 
does via Noether's theorem. 

The possibility of  a converse to Noether's theorem has been discussed 
(Palmieri and Vitale, 1970; Saletan and Cromer, 1971)-given a constant of  
the motion, can one reconstruct a vector field that generates it according to 
Noether's theorem? I shall show that even in the generaiized form noted above, 
the theorem has no converse. 

First, I examine the condition that a vector field X on T(M) x R, which 
does not necessarily project onto a vector field on M x R, preserves contact 
forms, Let X = ~a O/ax a + ~ a  O/ova + T O / a t ,  where now ~a and ~ may depend 
o n  v a. Then 

L x ( d x  a - vadt) = d~ a _ rladt - vadr 

={O~a _ v a  Of ~ {O~a _va  3r ) ( d v b _ a b d t  ) 10x b ax b] (dx~ - vbdt) ÷ ~ avb 

+ [lP(~ a) - vaF(~) - 71 a] d t  

So L x ( d x  a - vadt) E Ci f  and only if 

o~j _ ,,o o~ = 0 

av b Ov a 

n a = r (~  a) - v"p(~) 

In fact the first of  these conditions allows one to write the second as 

7°= +N]_ool 
at ] \v 

as before. 
I now assume that X preserves contact forms, and investigate the condition 

X I  dO = d F + a  

where F is a constant of  the motion,  and a E C. Now 

X _J dO = - g a b ( ~  b - v°r) (dv  a - Aadt)  + terms in (dx a - vadt) 
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OF OF 
d F  = - -  (dx  a - vadt) + - -  (dv a - Aadt) 

OX a OV a 

since P(F) = 0. Thus to satisfy the conditions, ~a and ~- must be chosen to 
satisfy 

OF 
g a b ( ~  b --  vbT)  - 

Ov a 

This may be written 

~a _ vat = _gab OF 
Ovb 

where gab denotes the inverse o f  gab , in the usual way. Now ~a and r must also 
satisfy 

0~ a 07" 
- -  - - U  a - - = 0  
Ov b Ov b 

But by differentiating the equation for ~a _ vaT, one obtains 

_ _ _  0 [ ac 0F]  vaov 
Ovb 

Thus it is necessary that 

[:o 

that is, t h a t  ( O I O v b ) ( g  ac OFIOv c) be a multiple of the identity matrix, if the 
vector field X is to exist. There is no reason why this condition should hold, 
in general, for a constant of the motion; and in fact it is easy to find examples 
in which it does not hold. For example, in the case of the harmonic oscillator, 
L = ~26ab(vav b - -  w2xaxb) ,  the function F = ~Aab(vav b + w2xax b) is a constant 
of the motion for any constant symmetric matrix Aab. But then 

o r b (  ac OF]= 

T [  g i 8°CAbc 

which will be a multiple of the identity only ifAab is itself a multiple of the 
identity. Thus the only one of these constants of the motion for which there 
is a corresponding vector field according to Noether's theorem is the energy. 

Compared with the Cartan form approach, Noether's theorem has several 
drawbacks. First, the notion of a symmetry is by no means so clear cut. In 
the Cartan form approach, a symmetry is a transformation that preserves the 
fundamental geometrical object in the theory, and when properly normalized, 
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permutes the orbits o f  dynamicM systems. The one - fo rm/At  is not  so directly 
related to the dynamics of  the system as 0 is, so preserving Ldt is not  such a 
clear definition o f  symmetry as preserving dO is. Secondly, in the Cartan ver- 
sion, there is a natural algebraic relationship between symmetries and constants 
of  the motion, which is almost one-to-one when the symmetries are normalized 
(though two constants of  the motion, which differ, trivially, by a number, 
give rise to the same symmetry vector field), and which is onto. This feature 
does not survive in the Noether's theorem approach. In fact, Noether's theorem 
when applied to the harmonic oscillator fails to produce what are in some ways 
the most interesting constants o f  the motion, those associated with the so- 
called hidden symmetries. 

6. Noether's Theorem and the Calculus o f  Variations 

It may be objected to the foregoing that the advantage of  Noether's theorem 
is that it arises from the formulation of  Lagrange's equations by means of  a 
variational principle. In fact, all relationships between one-forms may be 
expressed in terms of  integrals, so that this advantage, if such it is, holds for 
the Cartan form theory as well. I shall now briefly justify this remark. 

It is convenient to discuss variation of  integrals in some generality. Let co 
be a one-form on a manifold N; 7 a curve in N; and X a vector field on N, with 
one parameter group ~u. The curve ~u ° 7 is the curve obtained from 9' by 
transforming it by ~u. The one-form co may be integrated along this curve, 
over some fixed interval o f  the parameter, say [q, t2]. Let 

~(u)--- ~ co 
~u °3' 

The problem is to find an expression for/:(0),  the derivative o f t  with respect 
to u at u = 0, in terms of  X and co. Now 

from which it follows immediately that 

i(0) = fLxco 

Using the expression Lxco = X A dco + d(X, co), one obtains 

7 

This is the fundamental variational formula in integral form. 
To apply this result in the case of  a dynamical system, one must choose an 

appropriate one-form for co. The available choices are 0, the Caftan form, and 
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IAt ;  and clearly 0 is the better choice because when 3' is an integral curve o f  P, 
the integral f'r X _] dO vanishes since F is characteristic for dO. I fLxO is exact, 
or differs from an exact form d f  by a contact form, then 

3" 

and so f -  (X, 0 ) is constant along 7. 
Clearly this integral version adds nothing to the previous discussion. 

7. Conclusion 

I hope I have demonstrated the superiority o f  the Cartan form description 
of  the relation between symmetries and constants o f  the motion over the 
Noether's theorem approach; and also the superiority of  modern differential 
geometry techniques over classical ones for clarity and economy in deriving 
results in Lagrangian mechanics. 
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